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ABSTRACT
The benefits of crowdsourcing are well-recognized today for an in-
creasingly broad range of problems. Meanwhile, the rapid devel-
opment of social media makes it possible to seek the wisdom of a
crowd of targeted users. However, it is not trivial to implement the
crowdsourcing platform on social media, specifically to make so-
cial media users as workers, we need to address the following two
challenges: 1) how to motivate users to participate in tasks, and 2)
how to choose users for a task. In this paper, we present Wise Mar-
ket as an effective framework for crowdsourcing on social media
that motivates users to participate in a task with care and correctly
aggregates their opinions on pairwise choice problems. The Wise
Market consists of a set of investors each with an associated indi-
vidual confidence in his/her prediction, and after the investment,
only the ones whose choices are the same as the whole market are
granted rewards. Therefore, a social media user has to give his/her
‘‘best’’ answer in order to get rewards, as a consequence, careless
answers from sloppy users are discouraged.

Under the Wise Market framework, we define an optimization
problem to minimize expected cost of paying out rewards while
guaranteeing a minimum confidence level, called the Effective Mar-
ket Problem (EMP). We propose exact algorithms for calculating
the market confidence and the expected cost withO(n log2 n) time
cost in a Wise Market with n investors. To deal with the enor-
mous number of users on social media, we design a Central Limit
Theorem-based approximation algorithm to compute the market
confidence with O(n) time cost, as well as a bounded approxima-
tion algorithm to calculate the expected cost with O(n) time cost.
Finally, we have conducted extensive experiments to validate ef-
fectiveness of the proposed algorithms on real and synthetic data.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database Applications---
Data mining; H.1.2 [MODELS AND PRINCIPLES]: User/Machine
Systems---Human information processing
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1. INTRODUCTION
The wisdom of crowds has long been known, but only with the

development of online services has it becomes possible to enroll
and manage the crowd’s work effectively and handle payments
efficiently. On traditional crowdsourcing platforms like Amazon
Mechanical Turk (AMT), task holders post their tasks onto a pub-
lic task pool and wait for workers to choose them. Once the tasks
are completed, workers are paid via the crowdsourcing platform.
These centralized crowdsourcing platforms contribute greatly to fa-
cilitate the power of crowds. However, there are certain natural
drawbacks of this mechanism: 1) Payments are only weakly asso-
ciated with the quality of the work from crowd workers, so some
workers try to maximize income by giving answers fast, even to
the extent of giving random answers; 2) Task holders cannot ac-
tively choose the workers. Rather they have to accept anyone who
shows up and meets the published criteria, thereby having very lim-
ited control on the quality of workers recruited, and hence on the
quality of work produced; And 3) The crowd tends to be from a re-
stricted demographic class [10], which may produce biased results
when demographics matter.

Users of social media services can be a huge reservoir of work-
ers for crowdsourcing: 1) Users of social media range over a much
broader demographics, and of course, a larger population; 2)Infor-
mation in the users’ profile can be used to infer some of their in-
terests and abilities; 3) Task holders can actively enroll targeted
workers using built-in functions like ‘@’ (in Tiwtter) or private
messages (in Facebook). Therefore, there is an emerging notion of
"managed crowdsourcing" [5, 6], where workers are actively cho-
sen. In this paper, we present WiseMarket as an effective frame-
work to support such managed crowdsourcing, for tasks are two-
option decision making problems. To this end, we tackle two es-
sential challenges: how to motivate users to participate in tasks,
and how to choose users for tasks.

Markets are known to be an effective institution for aggregating
beliefs of online users and yielding reliable answers. For exam-
ple, in Racetrack Betting [8] investors are only allowed to choose
from two options, and the promised rewards are only given to the
investors whose investment meets the market opinion (the major-
ity of all investors). We use this idea as the basis for our frame-
work. Online users are considered investors in this market, while
the social media is treated as a collective knowledge base. Thus,
a wise market includes a set of investors, each associated with a
probability (individual confidence) that he or she will give the cor-
rect answer. The system maintains a pool of candidate users while
evaluating the users’ confidence simultaneously. When a particu-
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Table 1: 8 cases in WMACD

Case Correct Wrong Prob. Cost
1 {A,C,D} ∅ 0.448 3
2 {A,C} {D} 0.112 2
3 {A,D} {C} 0.192 2
4 {C,D} {A} 0.112 2
5 {A} {C,D} 0.048 2
6 {C} {A,D} 0.028 2
7 {D} {A,C} 0.048 2
8 ∅ {A,C,D} 0.012 3

lar task comes, the system recommends an optimal subset of users
and releases the task to them with promise of a reward. After their
choices, the answer preferred by a majority of the users will be out-
put as the market opinion and the ones who make the same choice
as the market are granted a reward. Note that the output is the ma-
jority of the market, not necessarily the same as the ground truth.
The probability that the market opinion meets the ground truth is
considered as the Market Confidence. The expected total reward
payout is the Market Cost borne by the task-owner. Then the prob-
lem of building an ‘‘effective’’ market is to find a set of investors
from all possible users, whose Market Cost is minimum subject to
its Market Confidence satisfying a given threshold. We show the
problem with the following example.

EXAMPLE 1. Consider a candidate set of investors (social me-
dia users) A(0.8), B(0.6), C(0.7), D(0.8), E(0.5). Each candi-
date investor has an individual confidence as in brackets, and the
task-owner has a market confidence threshold θ = 0.85. Our prob-
lem is to find a set of investors who have the minimum market cost
subject to the market confidence threshold.

First, we try the market, WM1 = {A(0.8), C(0.7), D(0.8)},
following the majority rule, WM1 works correctly only when at
least two investors make the correct choice. Specifically, there are
in total four out of eight cases that the market provides the correct
answers as shown in Table 1. In the first 4 cases, the number of
correct investors are in a majority(i.e. no less than 2). We obtain
the probability that the entire market performs correctly(Market
Confidence) by summing up the probabilities of the first 4 cases,
i.e. MC(WM1) = 0.448 + 0.112 + 0.192 + 0.1912 = 0.864.

Turning to the cost, we need to pay three units for case 1, and two
units each for cases 2,3,4. Note that even when the market does not
give the correct answer as in the last 4 cases, payments still need to
be made to the majority of the investors. We denote the investors in
majority as a Winning Set, whose size determines the payment. The
expected value of cost E[Cost] = 3 ·∑(Prob. of Case 1 and 8) +
2 ·∑(Prob. of Case 2 to 7) = 2.46.

If we instead selected WM2 = {B(0.6), C(0.7), D(0.8)}, it
turns out that WM2 has a market confidence of 0.788 and an ex-
pected cost of 2.36. WM2 is more ‘‘cheaper’’ than WM1. How-
ever, since the given threshold is θ = 0.85, WM2 does not satisfy
the confidence threshold. In such a case, WM1 is the answer.

In this paper, to address the problem of building an effective wise
market on social media, we have made the following contributions:

• We propose Wise Market, a new framework to manage the
wisdom of online social users.

• We define the Effective Market Problem as the central design
challenge for effective utilization of wise markets.

• We design efficient exact algorithms to calculate the market
confidence and the expected cost, as well as a Central Limit
Theorem-based approximation algorithm for the market con-
fidence and an approximation algorithm for the expected cost
with an approximation ratio of (3− 2θ).

• We provide an efficient algorithm to solve the Effective Mar-
ket Problem, which seamlessly incorporates the proposed al-
gorithms and two effective pruning methods.

The rest of the paper is organized as follows. A formal definition
of the problem is presented in Section 2. In Section 3, we study
the calculation of Market Confidence and present both exact and
approximate algorithms and in Section 4, we study the structure
of calculating Market Cost and propose both exact and approxima-
tion algorithms. Then, in Section 5, we build upon the work in
the preceding two sections to present the overall Effective Market
Algorithm(EMA). In Section 6, we empirically study the intrinsic
characteristics of the problem and the performance of the proposed
algorithms. Finally, in Section 7, we summarize the most recent
related work, and conclude in Section 8.

2. PROBLEM DEFINITION
2.1 Investor

In a Wise Market, each investor works on tasks, each of which
is to make a choice between two given options. The task may have
a (latent) ground truth, but this is not known to us. (Some tasks may
have a ground truth that is difficult to characterize -- e.g. which of
two logos is more "eye-catching".) When the option selected is
the same as the aggregate market choice (not necessarily the latent
ground truth), the investor receives a reward of one unit. Investors
make decisions based on their experience and general knowledge,
and there is a chance that an investor fails to identify the true value
of the target. So for an investor ιi, we define the individual confi-
dence ci to describe how likely an investor is to choose correctly,
and we use another variable vi ∈ {0, 1} to denote its actual vote
between the two choices.

DEFINITION 1 (INVESTOR CONFIDENCE). For each investor
ιi, the Investor Confidence ci is the probability that ιi chooses the
same option as the ground truth.

ci =Pr{ιichooses correctly}
=Pr{G = 0} · Pr{vi = 0|G = 0}

+ Pr{G = 1} · Pr{vi = 1|G = 1}
=Pr{vi = G|G}

where G is the ground truth, the confidence ci is a probability of
making the correct choice, and there are two standard ways to eval-
uate it. First, confidence could be estimated from the frequency of
correct judgments, which could be implemented by analyzing pre-
vious records or inserting tasks with known answers [12]. Second,
since the probability reflects the subjective degree of the belief, the
confidence ci can also be estimated by associating the relative au-
thoritativeness of users [6].

2.2 Wise Market
A Wise Market is a set of investors along with rules to aggregate

the market information and issue rewards to successful investors.
Assume I = {ι1, ι2, . . . , ιN} is the set of all investors, we define
a Wise Market as follows:

DEFINITION 2 (Wise Market). A Wise Market is a set of in-
vestors WMn = {ι1, ι2, . . . , ιn} ⊆ I with size n, where each ιi
is associated with an individual confidence ci and actual vote vi.

The most popular aggregation rule is Majority Voting, which
presents the opinions of the majority of investors as output. We
denote such output as the Market Opinion and present the formal
definition as follows:

DEFINITION 3 (MARKET OPINION). Given a Wise Market
WM , the Market Opinion OP (WMn) is the aggregated result
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according to the following equation:

OP (WMn) =

{
1 if

∑
vi ≥ �n

2
�

0 if
∑

vi ≤ �n
2
	

To avoid the cumbersome special case where the vote is tied, in this
paper we study the case where the size of a Wise Market is ODD.

2.2.1 Market Confidence
As an institution for aggregating the distributed knowledge, the

quality of a Wise Market is measured according to the probability
that the market successfully identifies the true value of a task. For
better illustration, we first define the concept of Truth Set C =
{ιi|ιi ∈ WMn s.t. vi = G}, which includes the investors whose
answers are identical to the ground truth G.

DEFINITION 4 (MARKET CONFIDENCE). The Market Confi-
dence MC is defined as the probability that the Market Opinion is
the same as the ground truth G:

MC(WMn) =Pr(OP (WMn) = G|G)

=Pr(
∣∣C∣∣ ≥ �n

2
�) = Pr(

∣∣C∣∣ ≥ n+ 1

2
)

=

n∑
k=�n

2
�

∑
A∈Fk

∏
i∈A

ci
∏

j∈Ac

(1− cj)

where Fk = {A
∣∣∣|A| = k,A ⊆ WMn} is all the subsets of WMn

with size k and Ac is the complementary set of A.

2.2.2 Market Cost
Another significant concept for a Wise Market is the Market Cost.

We assume that unit rewards are granted to the winning investors.
In such a setting, the market cost is numerically equal to the number
of winning investors in a market, in other words, the size of the
majority in a market.

We define the concept of Winning Set as the set of investors who
have the same opinion as the market opinion. We then formally
define the Market Cost as follows:

DEFINITION 5 (MARKET COST). Given a Wise MarketWMn,
the Market Cost, Cost(WMn), is the size of the Winning Set:

Cost(WMn) =
∣∣W ∣∣ = ∣∣∣{ιi|ιi ∈ WMn s.t. vi = OP (WMn)}

∣∣∣
Note that, only when OP (WMn) = G, the two sets W and C

are equal, otherwise |W |+ |C| = n.
The Market Cost varies according to different constitution of

Wise Market, and to measure the effectiveness of a Wise Market,
we present the concept of Expected Market Cost, which follows
the definition of expected value:

E[Cost(WMn)]

=
n∑

k=�n
2
�
k · Pr(|W | = k)

=
n∑

k=�n
2
�
k · [

∑
A∈Fk

∏
i∈A

ci
∏
j∈Ac

(1− cj)

+
∑

A∈Fk

∏
i∈A

(1− ci)
∏
j∈Ac

cj ]

2.3 Effective Market Problem
Formally, we define the Effective Market Problem as follows:

DEFINITION 6 (EFFECTIVE MARKET PROBLEM). Given a set
of investors I = {ι1, . . . , ιN} with size N , a Market Confidence

threshold θ, the Effective Market Problem(EMP) is to find a subset
of all investors WMn ⊆ I , so that:

minimize E[Cost(WMn)]

subject to MC(WMn) ≥ θ

3. CALCULATION OF MARKET CONF
There are three main subproblems to be studied to build up an

effective Wise Market from a given set of investors, the first one
is to efficiently calculate the Market Confidence, the second one
is to calculate the Market Cost, and the third one is to efficiently
pinpoint the most effective subset of all investors as a market. We
study each of these sub-problems in turn in the following three sub-
sections.

3.1 A Divide-and-Conquer-based Exact Method
Based on Definition 4, the Market Confidence aims to compute

the probability that the size of C is no less than �n
2
�. Actually,

the size of C (
∣∣C∣∣) is considered to be a discrete random variable.

Therefore, the probability mass function of
∣∣C∣∣ is shown as fol-

lows,

Pr(
∣∣C∣∣ = k) =

∑
A∈Fk

∏
i∈A

ci
∏
j∈Ac

(1− cj)

For the corresponding probabilities of different values of
∣∣C∣∣, we

store them in a vector.
In order to compute the Market Confidence efficiently, we pro-

pose a divide-and-conquer-based exact algorithm (Algorithm DC
in Figure 1). The algorithm first divides the set of investors WMn

into two groups, WMn1 and WMn2, as long as WMn does not
have a single member in lines 1-2. Then, the algorithm recursively
computes the probability mass function of

∣∣C∣∣ in the two parti-
tioned groups in lines 3-4. As a consequence, we get two vectors of
size n

2
(when n is even), to store the probability distribution of

∣∣C∣∣
inWMn1 and WMn2, respectively. In fact, the probability of each
possible value of global

∣∣C∣∣ can be considered as the convolution
of corresponding probabilities in two partitioned groups. Accord-
ing to the concept of convolution, the corresponding probabilities
of each value of

∣∣C∣∣ in n investors can be represented as:

V ec|C|[k] =
k∑

i=0

V eclower[i]× V ecupper[k − i]

where V eclower and V ecupper are used to store the probability dis-
tribution of

∣∣C∣∣ in WMn1 and WMn2, respectively. Moreover,
in order to speedup the recursive computation of convolution, we
employ the Fast Fourier Transform (FFT) and the Inverse Fast
Fourier Transform(iFFT) in line 5. In addition, the algorithm ex-
its in lines 8-10. Thus, based on Algorithm DC, we can obtain
the probability distribution of

∣∣C∣∣ and compute MC(WMn) of
the given set of investors WMn easily. Algorithm MCA(Figure 2)
shows the details of computing market confidence of WMn.

Back to the running example, we illustrate Algorithm DC in Fig-
ure 3: We first split the set of {A,C,D} into two smaller sets
{A} and {C,D}, and recursively split {C,D} into {C} and {D}.
Then we merge the smaller sets using convolution, and FFT and
iFFT are adopted to speedup the process.

Computational Complexity Analysis: In line 5 of Algorithm DC,
the computation cost of the FFT-based convolution is O(n log n),
where n is the size of WMn. Thus, the whole complexity of
Algorithm DC isO(n log2 n). Consequently, the exact market con-
fidence can be computed by Algorithm MCA with computational
complexity of O(n log2 n).
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Algorithm DC {
Input: A set of investors WMn

Output: A vector of probability distribution of
∣
∣C

∣
∣, V ec|C|

(1) if (n �= 1)
(2) split n investors into two groups WM�n

2
� and WM� n

2
�;

(3) V ecupper ← DC(WM�n
2

�);
(4) V eclower ← DC(WM�n

2
�);

(5) V ec|C| ← iFFT (FFT (V ecupper) ∗ FFT (V eclower));
(6) return V|C|;
(7) else
(8) V ec|C|[0]← 1 − c1;
(9) V ec|C|[1]← c1;
(10) return V ec|C| ;

}

Figure 1: Divide-and-Conquer-based Algorithm (DC)

Algorithm MCA {
Input: A set of investors WMn

Output: The market confidence MC(WMn)
(1) V ec|C| ← DC(WMn));
(2) for i← �n2 � + 1 to n
(3) MC(WMn)←MC(WMn) + V ec|C|[i];
(4) return MC;

}

Figure 2: Market Confidence Algorithm (MCA)

3.2 A Chernoff-Inequality-based Bounding
According to Definition 6, we only need to test whether the mar-

ket confidence of WMn is larger than the given threshold and need
not to get the exact value of MC(WMn). Thus, we are interested
only in an efficient checking method. In this part, we include a
tight upper bound of MC(WMn) to help speed up the checking.

LEMMA 1. (Chernoff-Inequality-based Bounding) Given a Wise
Market WMn, a market confidence threshold θ, MC(WMn) sat-
isfies the following upper bound,

MC(WMn) <

{
2−δε δ > 2e− 1

e−
δ2ε
4 0 < δ < 2e− 1

where ε =
∑

ιi∈WMn
ci and δ = (�n

2
� − ε)/ε.

Note that due to the limit of the space, proofs of all the lemmas
in this paper can be found in the technical report [7].

Based on Lemma 1, we only spend O(n) time to check whether
the upper bound satisfies the confidence threshold.

3.3 A Central-Limit-Theorem-based Approx-
imation Algorithm

As we discussed above, the Chernoff-Inequality-based bounding
technique of MC(WMn) can improve the efficiency of the exact
solution by employing the upper bound to check whether the set
can be pruned. Then, we perform Algorithm MCA if the set fails
to be filtered. However, in a real social network, which features
a large number of candidate users, the computational cost is still
high, especially when the set of investors fail to satisfy the market
confidence threshold and cannot be filtered by the above pruning
method. In this subsection, we propose an efficient Central-Limit-
Theorem-based approximation algorithm which not only has linear
computational complexity but also returns the result with a high
confidence. The basic idea is to use the probability density function
of a Standard Normal distribution to replace the probability mass
function of

∣∣C∣∣ according to the Central Limit Theorem. Thus,
MC(WMn) can be approximately computed by the probability
density function of a Standard Normal distribution. In the follow-
ing, we firstly prove that the probability distribution of

∣∣C∣∣ con-
verges in probability to a Standard Normal distribution, and then
propose our approximation algorithm.

Figure 3: DC Algorithm on Running Example

THEOREM 1. (Central Limit Theorem of the probability distri-
bution of

∣∣C∣∣) Given a Wise Market WMn, MC(WMn) con-
verges in probability to a Standard Normal distribution, namely

MC(WMn) ∼ Φ(
�n
2
�+ 0.5− ε

σ
)

where ε =
∑

ιi∈WMn
ci and σ2 =

∑
ιi∈WMn

ci(1− ci).

PROOF. For each investor associated with individual confidence
ci, we denote ζi as the random event that ιi invests correctly,
which follows the Binomial distribution. Thus, the expectation and
variance of ζi are E(ζi) = ci and V ar(ζi) = ci(1 − ci), respec-
tively. For a given Wise Market WMn,

∣∣C∣∣ =
∑n

i=1 ζi, so the
expectation and variance of

∣∣C∣∣ are

E(|C|) =
n∑

i=1

ci and V ar(|C|) =
n∑

i=1

ci(1− ci)

Because different ιi may have different ci, ζ1...ζn are indepen-
dent and may not follow a same distribution. Based on the Lya-
punov’s Central Limit Theorem, the probability distribution of

∣∣C∣∣
converges in probability to a Standard Normal distribution iff the
following two conditions hold:

1.E[|ζi|]2+δ is finite where δ > 0(i = 1, ..., n)

2. lim
n→∞

1

V ar(|C|)2+δ
E[|ζi − E(ζi)|]2+δ = 0 if there is δ > 0

For the first condition, it is obviously correct because E(ζi) and
V ar(ζi) are finite. And the second condition is also satisfied based
on the existence of a suitable δ. A detailed proof can be found in
our technical report [7].

Based on Theorem 1, we design an approximate algorithm(see
Algorithm CLT-MC in Figure 4) to compute MC(WMn) efficiently.
In Algorithm CLT-MC, the expectation ε and the variance σ of∣∣C∣∣ are accumulated in lines 2-4, respectively. Then, in line 5,
the MC(WMn) can be obtained by a hash function which maps
different expectations and variances to the corresponding probabil-
ities under a Standard Normal distribution.

Back to the running example, while ε = E(|C|) = 0.8 + 0.8 +

0.7 = 2.3 and δ =
√

V ar(|C|) =
√
0.16 + 0.16 + 0.21 =

0.728, according to Theorem 1, φ( 2+0.5−2.3
0.728

) = 0.61. Note that
as the data size increases, the approximated value gets closer to the
real value. Please refer to Figure 8(g) and Figure 8(i).

Computational Complexity Analysis:
In Algorithm CLT-MC, the computational complexity is only

O(n) where n is the size of Wise Market WMn because we only
accumulate the expectation and the variance of

∣∣C∣∣. Moreover,
since we implement the probability calculation of the Standard Nor-
mal distribution via a hashing function, line 5 only requiresO(1)time.

4. CALCULATION OF MARKET COST
Besides testing the market confidence requirement, calculating

the market cost is another important task of the Effective Market
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Algorithm CLT-MC {
Input: A set of investors WMn

Output: The market confidence MC(WMn)
(1) MC(WMn)← 0;
(2) for i← 1 to n
(3) ε← ε + ci;
(4) σ2 ← σ2 + (ci(1 − ci));

(5) MC(WMn)← Φ(
�n

2
�+0.5−ε

σ );
(6) return MC(WMn);

}
Figure 4: CLT-based Approximation Market Confidence Algorithm (CLT-MC)

Problem. In this section, we design an exact and an approximation
algorithms to compute the market cost, respectively.

4.1 An Exact Algorithm
In this subsection, we focus on how to compute the market cost

exactly. Based on Definition 5, we can find that it is easy to com-
pute after the probability distribution of

∣∣C∣∣ is known. Thus, the
basic idea of the exact algorithm is to compute the expected market
cost directly from the probability distribution of

∣∣C∣∣. More details
are shown in Algorithm EEC(Figure 5).

In Algorithm EEC, it first calls Algorithm DC to obtain the prob-
ability distribution of

∣∣C∣∣ in line 1. Then, according to Definition 5,
the expected market cost is computed in lines 2-6 and the final mar-
ket cost is returned in line 7.

Computational Complexity Analysis: Because Algorithm EEC
employs Algorithm DC in line 1, this step spends O(n log2 n) com-
putational cost where n is the size of the Wise Market. In lines
2-6, the algorithm spends O(n) time cost. Thus, the total compu-
tational complexity of Algorithm EEC is O(n log2 n) + O(n) =
O(n log2 n).

4.2 An Approximation Algorithm
In order to compute the market cost efficiently, we also introduce

an approximation algorithm which has linear computational com-
plexity and a constant approximation ratio. Before we discuss the
approximation algorithm, we introduce a pair of lower and upper
bounds of the expected market cost via the following two lemmas.

LEMMA 2. (Lower Bound of Expected Market Cost) Given a
Wise Market WMn, the following inequality holds:

n∑
i=1

ci < E[Cost(WMn)]

where each ci is the invest confidence of each ιi.

In addition to the lower bound of the expected market cost in
Lemma 2, we also find the upper bound of the expected market
cost in the following lemma.

LEMMA 3. (Upper Bound of Expected Market Cost) Given a
Wise Market WMn, and a market confidence threshold θ, the fol-
lowing inequality holds:

E[Cost(WMn)] <

n∑
i=1

ci + n(1− θ)

Based on the aforementioned upper bound of the expected mar-
ket cost, we can use the upper bound instead of the expected market
cost as the approximation result and guarantee that the approxima-
tion result is at most (3 − 2θ) times larger than the exact result in
the following theorem.

THEOREM 2. (Approximation Ratio of Approximate Expected
Market Cost) Given a Wise Market WMn, a market confidence
threshold θ, the upper bound in Lemma 3 is at most 3 − 2θ times
larger than the exact expected market cost.

Algorithm EEC {
Input: A set of investors WMn

Output: The expected Market Cost E[Cost(WMn)]
(1) V ec|C| ← DC(WMn);
(2) for i← 1 to n
(3) if i ≥ n

2
(4) E[Cost(WMn)]← E[Cost(WMn)] + i× V ec|C|[i] ;
(5) else
(6) E[Cost(WMn)]← E[Cost(WMn)] + (n− i)V ec|C|[i] ;
(7) return E[Cost(WMn)];

}
Figure 5: Exact Expected Market Cost Algorithm (EEC)

PROOF (Sketch). According to the probability distribution of
∣∣C∣∣,

we can do the following transformation.

n = n · 1 = n ·
n∑

k=�n
2
�
[
∑

A∈Fk

∏
i∈A

ci
∏

j∈Ac

(1− cj)

+
∑

A∈Fk

∏
i∈A

(1− ci)
∏
i∈Ac

cj ]

Then, we know that

2E[Cost(WMn)] =
n∑

k=�n
2
�
2k · [

∑
A∈Fk

∏
i∈A

ci
∏
j∈Ac

(1− cj)

+
∑

A∈Fk

∏
i∈A

(1− ci)
∏
i∈Ac

cj ] > n

According to the upper bound of expected market cost in Lemma 3,

E[Cost(WMn)] <
n∑

i=1

ci + n(1− θ)

<
n∑

i=1

ci + 2E[Cost(WMn)] · (1− θ)

< E[Cost(WMn)] + 2(1− θ) · E[Cost(WMn)] (Lemma 2)

= (3− 2θ) ·E[Cost(WMn)]

Therefore, the upper bound of the expected market cost is at most
(3− 2θ) times of the exact result.

Based on Theorem 2, we can design an approximation algorithm
which has (3−2θ)−approximation ratio in Algorithm AEC(Figure 6).

In Algorithm AEC, we firstly compute ε, the expectation of
∣∣C∣∣

in lines 1-2. Then, we return an approximation result in line 3.
Back to the running example, according to the results in Sec-

tion 3(Figure 3), we can obtain the exact cost E[Cost(WM1)] =
0.012·3+0.124·2+0.416·2+0.448·3 = 2.46. While using Algo-
rithm 6, we could obtain an approximate value ofE[Cost(WM1)] =
2.3 + 3 · (1− 0.85) = 2.75, where the threshold θ = 0.85 and the
algorithm achieves an approximation ratio equal to 1.1.

Computational Complexity Analysis:
Because Algorithm AEC only needs to compute the expectation

of
∣∣C∣∣, the total computational complexity of Algorithm AEC is

O(n).

5. BUILDING AN EFFECTIVE MARKET
In this section, we discuss the strategy to solve the effective mar-

ket problem by integrating both algorithms of computing the mar-
ket confidence and the expected market cost. According to the def-
inition of the expected market cost, there is not any monotonicity
or anti-monotonicity between the subset/superset relationship. So
we have to enumerate all possible subsets of the N investors and
then check their market confidences and the expected market costs
via our solutions discussed above. Therefore, an effective and effi-
cient heuristic algorithm for the effective market problem is shown
by the following filtering-and-verification framework.
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Algorithm AEC {
Input: A set of investors WMn

Output: The expected Market Cost E[Cost(WMn)]
(1) for i← 1 to n
(2) ε← ε + ci ;
(3) return E[Cost(WMn)]← ε + n(1− θ);

}
Figure 6: Approximation Expected Market Cost Algorithm (AEC)

First Step: We first check whether there exists at least one in-
vestor whose market confidence is no less than the market confi-
dence threshold θ. If so, the effective market only includes the
investor who has the smallest but threshold-satisfying confidence
among all the given investors, and then the algorithm stops. Actu-
ally, it is equal for any eligible investor to be selected when the size
of the effective market is one. However, for the case that the size of
the effective market is more than one, an effective heuristic rule is
that invertors with the smallest confidence are tried firstly because
the unqualified markets can be safely pruned in O(n) time com-
plexity (Lemma 1 and Algorithm DC). On the contrary, we have to
spend O(nlog2n) time complexity to test the unqualified markets.
Therefore, we still select the investor with the smallest confidence
when the size of market is one to keep the consistent strategy style.

Second Step: If there is no single investor as the effective mar-
ket, we will enumerate all possible subsets. The main heuristic
rule is to search from the smallest market to the larger ones, and
test from the combination of investors with smallest confidence to
that with higher confidence. Thus, if the Chernoff inequality-based
upper bound of a subset is smaller than θ, this subset can be fil-
tered.(Filtering Phase)

Third Step: For the subsets of all investors that cannot be pruned,
we compute their expected market costs and find the minimum one.
(Verification Phase)

Note that in the first step, we select the investors with the small-
est confidence for quickly finding the eligible crowd with the min-
imum number of investors. Based on the framework above, in the
worst case, this solution is O(2N ) where N is the size of all the
given investors. For a large amount of data, it is expensive to use
this exact method to find the effective market. Therefore, accord-
ing to the approximation algorithm of the expected market cost in
Algorithm AEC, we propose an efficient approximation algorithm
to discover the effective market in Algorithm EMA(Figure 7). The
basic idea is to search for an effective market in the increasing or-
der of size. For the subsets of same size, we can rank them by
their approximation expected Market Cost (Algorithm AEC) in an
ascending order. Once we find a subset whose market confidence
is greater than θ, we stop and return this subset as the final effective
market. More details can be found in Algorithm EMA. Before dis-
cussion of Algorithm EMA, we propose a pruning method called
Early Termination to speed up the algorithm.

LEMMA 4. (Early Termination) Given a set of investors I =
{ι1, ι2, . . . , ιN}, a subset M ⊆ I which has the current minimum
market cost(CMC) so far, a market confidence threshold θ, the
algorithm of EMP can stop if and only if CMC ≤ MC(M

′
min)

where M
′
min contains |M |+ 2 investors with the smallest individ-

ual confidence ci.

In Algorithm EMA, we firstly check whether the largest proba-
bility among N investors is larger than the confidence threshold
θ. If so, we can directly return the investor who has the minimum
probability among investors whose probabilities are not less than
θ in line 1. Otherwise, we continue to check other subsets of the
N investors in lines 3-12. We first perform the Early Termination
pruning of Lemma 4 in lines 5-6. Then, for the set of all subsets
whose size is i, Si , we use the function RankMerge(Si) to gen-
erate all (i+2)-size subsets by merging any two i-size subsets and to

Algorithm EMA {
Input: A set of candidate investors I = {ι1, . . . , ιN}, a market confidence threshold θ
Output: the effective market EM
(1) if (Max(ci) ≥ θ)
(2) return EM ← c ∈WMn s.t. minimized{E[Cost(c)]} and MC(c) ≥ θ;
(3) else
(4) for i← 1 to n− 1
(5) If EM ≤ [AEC(min(si+2), θ)]
(6) return EM ;
(7) Mi+2 ← RankMerge(Mi) ;
(8) for (sj ∈ Mi+2)
(9) if MC(sj) ≥ θ &&AEC(sj , θ) ≤ EM
(10) EM ← AEC(sj , 0);
(11) else
(12) continue;

}
Figure 7: Effective Market Algorithm (EMA)

rank them according to the combinatorial order of their ranked con-
fidences in line 7, e.g. < c1, c2, c5 > ranks before < c1, c3, c4 >.
If there exists at least one subset whose market confidence is no
less than θ, we find the subsets which have the smallest expected
market cost among all (i+2)-size subsets whose market confidences
are no less than θ (lines 8-10). In addition, in lines 11-12, we di-
rectly terminate the process to check any (i+2)-size subset if all
i-size subsets fail to satisfy the confidence threshold θ .

6. EVALUATION
In this section, we present a series of empirical studies of the

performance of our proposed algorithms. All experiments are con-
ducted on a PC with 2 Intel(R) Core(TM) 2.13GHz CPU and 2GB
memory, running on Microsoft 64-bit Windows 7.

Since WiseMarket is designed as an advanced tool for the enterprise-
level task-holders, our empirical studies are conducted for evaluat-
ing the effectiveness and efficiency of the tool.

Synthetic datasets are generated to explore the intrinsic char-
acteristics of the problems and algorithms; and real datasets are
adopted to evaluate the usability of the algorithms. Therefore, we
estimate the confidence from both ranking-based method [8] and
benchmark-based method [15] on a collection of Weibo1 data with
1,200 users, which could serve as a real distribution of the confi-
dence among social online users. The Weibo service is a rapid
growing platform in Chinese web community, and we choose it as
a representative example for online user distribution. In addition,
synthetic data sets include both normal distribution and Zipf distri-
bution. The Zipf distribution is pervasively observed in Internet-
related phenomenon, and become one of the most verified laws in
the networks associated with human behaviors[1]. The basic fact
of Zipf distribution is that in social networks, there is a log-linear
relationship between the size and the rank of certain groups of indi-
viduals. The distribution is described by a skew-factor s, indicating
how quickly the size decreases according to its rank.

To better study the inherent computational characteristics of the
EMP , we conduct an empirical study to test the intrinsic traits of
MC and Cost, and the performance of our algorithms for calcula-
tion of MC, Cost, and EMP .

6.1 Intrinsic Traits of MC and Cost

The characteristics of the Market Confidence and Market Cost
over different datasets are our major interest. We generate a set
of datasets following normal distribution, with varying mean value
from 0.1 to 0.9 and variance from 0.1 to 0.3 respectively. Each
dataset includes 1,000 candidate investors.

The results are shown in Figure 8(a) and Figure 8(b). We see that
when the given mean approaches 0.5, the MC increases rapidly to
1. This indicates that a reliable Wise Market may be established
from a relatively small group of investors. Note that when the vari-
ance is small(e.g. var = 0.1), the convergence is much more
1www.weibo.com, the largest microblog service in China
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(a) MC v.s. mean(N)
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(b) Cost v.s. mean(N)
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(c) MC v.s. size(N)
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(d) MC v.s. size(Z)
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(e) Efficiency of Cal. MC(N)
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(f) Efficiency of Cal. Cost(N)
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(g) Efficiency of Cal. MC(Z)
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(h) Efficiency of Cal. Cost(Z)
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(i) Effectiveness of Cal. MC(N)
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(j) Effectiveness of Cal. Cost(N)
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(k) Effectiveness of Cal. MC(Z)
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(l) Effectiveness of Cal. Cost(Z)

Figure 8: Experiments Results I(N for Normal Dist., Z for Zipf Dist.)

obvious since it is a closer approximation to Binomial Distribution.
Another interesting phenomenon is in Figure 8(b), where the mar-
ket with lowest Market Cost is achieved by the investors with mean
of 0.5. In such Wise Market, the probability density distribution of
the size of Winning Set in a Wise Market is close to �n

2
�. Conceptu-

ally, either too many wise investors or too many careless investors
will cause a large size of WinningSet, which incurs higher Cost
and renders the Wise Market ‘‘ineffective’’.

To further observe the characteristics of MC according to the
change of the size of the given Wise Market, we run the algorithm
on datasets with varying size from 10 to 90, where datasets from
Normal distribution have mean from 0.3 to 0.7 and variance of 0.2,
and of Zipf distribution have skew-factor s from 0.3 to 0.7. The
results are shown from Figure 8(c) to Figure 8(d). In Figure 8(c), it
is shown that the MC is very sensitive to the given mean value of
the Wise Market. For the Wise Market whose mean value is above
0.5, the MC grows very sharply to 1 with increasing of the market
size. Note that for Zipf Distribution, the MC decreases quickly to
almost zero. It is because in the datasets of Zipf distribution, most
of the investors have low confidence.

6.2 Performance of Algorithms for Calculat-
ing MC and Cost

Based on the intrinsic traits of MC and Cost, in this subsection
we evaluate the performance, including efficiency and effective-
ness, of our proposed algorithms.

Efficiency
We compare the efficiency among all proposed algorithms for

calculating MC and Cost. The datasets have varying size from
100 to 800. In addition, for Normal distribution, the mean is set as
0.7 and the variance is set as 0.2; for Zipf distribution, the parame-
ter s is set as 0.7.

We conduct Algorithm DC and Algorithm MCA to calculate ex-
act MC value(denoted as exact), and we also conduct Algorithm

based on Lemma 1 and Algorithm CLT-MC to fetch the upper
bound (denoted as chnf ) and the approximated values (denoted as
clt). All results are shown from Figure 8(e) to 8(h). The results
show great efficiency speedup by utilizing the upper bounding tech-
nique and Central Limit Theorem-based approximation algorithm.
It can be observed that the time cost of exact algorithms exhibits an
O(n · log2 n) increasing tendency.

Effectiveness
The datasets are generated following a normal distribution with

mean 0.6 and variance 0.2. For the Zipf distribution, the generated
datasets have skew-factor s 0.2. All datasets are studied with num-
ber of nodes varying from 10 to 90. The results are shown from
Figure 8(i) to Figure 9(b). The result in Figure 8(i) shows the close
approximation between the exact value(‘‘exact’’) of MC and the
one derived via CLT (‘‘clt’’). Due to space limitations, we present
the most representative results of performance of the effectiveness
issue on Weibo data from Figure 9(e) to Figure 9(h).

In Figure 8(j) and Figure 8(l), we observe the approximation ra-
tio of the Cost both in Normal and Zipf Distribution datasets. In-
stead of a converging asymptotically, the approximation of Market
Cost exhibits a linear tendency(i.e.3 − 2θ). Further, we vary the
given threshold θ from 0.6 to 0.95, and the results of Cost and
its approximation are shown in Figure 9(a) and Figure9(b), where
the higher the threshold, the closer the approximation is. Note that
in Figure 9(b), the approximated cost becomes lower than the ex-
act value(dashed line denoted as appx-2) when the given threshold
is greater than 0.8. That is because the approximation only holds
when the confidence of the given Wise Market satisfies the thresh-
old(see Theorem 2). So, in Algorithm EMA, the approximation of
Cost is only considered after its MC is validated.

6.3 Performance of Algorithm for EMP

The EMP problem is essentially with an O(2N ) search space,
so the proposed algorithm is actually an approximation algorithm.
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(a) Effectiveness of Cal. Cost(N)
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(b) Effectiveness of Cal. Cost(Z)
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(d) Cost of EMP
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(e) Effectiveness of Cal. MC(B)
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(f) Effectiveness of Cal. MC(R)
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(g) Effectiveness of Cal. Cost(B)
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(h) Effectiveness of Cal. Cost(R)

Figure 9: Experiments Results II(N for Normal Dist., Z for Zipf Dist.;B for Benchmark-based method, R for Ranking-based method)

With varying size from 100 to 800 and varying threshold θ with
0.8 and 0.9, we present the Market Confidence and Cost of the
selected Effective Market. Results are shown in Figure 9(c) and
Figure 9(d). It is interesting to observe that given a threshold, our
algorithm could return a Wise Market with a proper MC. While
the size of the given candidates set increases, the MC and Cost
of selected Wise Market do not increase obviously. However, the
increased threshold θ will cause a rise in Cost in order to include
more investors with higher individual confidence. Moreover, the
dotted line represents the performance with a baseline greedy al-
gorithm, which enrolls workers according to their confidence until
the threshold is satisfied. The result shows that for the same can-
didate crowd, the market from our algorithm requests less market
cost, which verifies our motivation for a Wise market.

From Figure 9(e) to Figure 9(h), we show the performance of
EMP on real datasets. The results correspond to the complexity
analysis in Section 5, where the approximation of MC and Cost
behave satisfactory with increasing size. The difference of perfor-
mance originates from different confidence estimation methods.

7. RELATED WORK AND DISCUSSION
Crowdsourcing is the human computation [19] and social com-

puting [11] powered with crowdsourced workforce. In the context
of data management, crowdsourcing is primarily used in one of two
ways: 1. As a new computing power, the crowds serve as ‘‘HPU’’
that broadens the spectrum of processable data; 2. it introduces the
entire social media/network as the data source instead of traditional
formatted datasets. There are several leading prototype databases
powered with crowdsourcing, e.g. sCoop [18], CrowdDB [9] and
Qurk [14], as well as several specific operations based on these
prototypes, e.g.Ranking [23], Join [13], Entity Matching [24], etc.
Most of these systems and applications rely on a crowdsourcing
platform like AMT as the workforce market. In addition, there are
efforts to capture the wisdom of crowds from social media users,
most notably in the context of opinions and reviews of popular
products and travel (hotels and restaurants). Beyond these, social
sensor networks are proposed to monitor earthquakes [21] and epi-
demics [2]. Particularly, a visionary work [6] studies decision mak-
ing tasks on micro-blog service with an idealized payment model.

Another related concept is the Prediction Market, which is be-
lieved to be initially inspired by the financial markets’ capability
of processing miscellaneous information. In the setting of such
a market, even though investors intrinsically choose the option to
maximize their rewards, the choice still reflects the investor’s real

opinion between the two options (proven in [8]). As prototypes
but also successfully running business, Iowa Electronic Market [3]
and Intrade [4] are early examples of real-world prediction markets.
Please also refer to [26] for a comprehensive survey of applications
and models of the prediction market.

The quality of the answers from crowds is always a major con-
cern for researchers in this area, and conducting ‘‘workers’’ se-
lection in an active manner is one of the best practices. Related
works include Active Surveying [22, 25] which studies the opti-
mal approach to issue social inquiries. Survey sampling is a well-
developed science [20]. The primary concern is to get representa-
tive samples from different demographic segments of the popula-
tion, with an assumption of differences in opinion across segments.
In our case, we are less interested in demographic differences --
rather we are operating in a universe with a well-understood ground
truth, which we just happen not to know and hence crowdsource to
learn. Moreover, online review aggregation [17, 16] has been ex-
tensively studied in the social media scenario these works typically
aggregate all the inputs without any confidence or quality guaran-
tee. Furthermore, the user contribution is driven by their own in-
trinsic motivation, and hence hard to control.

Discussion
Note that the crowd ‘‘workers’’ here are normal social network/media

users, who spend time on the service for pleasure and entertainment.
Therefore, dissimilar to the commercial crowdsourcing platform
like AMT, the existence of a potential payment is already an ef-
fective arousal; besides, all the work of the users is simply making
a binary choice to maximize their benefits, which also amazingly
reflects their own judgement about the task (proven in [8]). As a
comparison, the worker model in multi-agent systems (MAS) is de-
signed to be more sophisticated with diverse functional attributes,
which facilitates the study of logic and effectiveness of mutual co-
operation. In summary, model-wise, our work provides task hold-
ers an advanced ‘‘crowd finder’’ while MAS focuses more on the
worker side; and problem-wise, our work tackles a special subset
problem challenge, while the MAS aims at more sophisticated op-
timization problems.

The limitation of this work is that we only focus on binary voting
tasks, but it will not be substantially difficult to extend the setting
to multiple choice problems. Moreover, this work is serving as a
visionary effort in the research line of actively exploiting the power
from online social users. Exciting future work includes more pow-
erful and sophisticated tasks, where the quality of the crowds is
measured differently according to the specific tasks.
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8. CONCLUSION
In this paper, we define a new architecture for crowdsourcing

using prediction markets defined over social media services. We
define the Effective Market Problem(EMP) as a means for task
owners to get crowdsourced answers with the smallest expected
cost while meeting a specified confidence threshold.

To calculate the market confidence, we present an exact algo-
rithm with O(n log2 n) time and a Central Limit Theorem-based
approximation algorithm with O(n) time. To calculate the ex-
pected market cost, an exact algorithm with O(n log2 n) time com-
plexity is provided, and an approximation algorithm, which has the
O(n) time complexity and the (3−2θ) approximation ratio, is pro-
vided. An efficient algorithm for EMP by integrating the proposed
algorithms. We have verified our proposed algorithms through ex-
tensive empirical studies.

We believe that this is only the first paper to exploit this new
architecture, restricted to binary questions with a simple majority
vote as the aggregation method. We hope, in the future work, to be
able to further expand the class of questions that can be addressed
fruitfully with this architecture.
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10. APPENDIX
10.1 Correctness of Lyapunov’s Central Limit

Theorem
For a given set of investors WMn, events ζ1...ζn are independent and

may not follow a same distribution. The correctness of Lyapunov’s CLT is
based on the guarantee of the following two constraint conditions.

1.E[|ζi|]2+δ is finite where δ > 0(i = 1, ..., n)

2. lim
n→∞

1

V ar2+δ(|C|)E[|ζi − E(ζi)|]2+δ = 0 if there is δ > 0

The first condition has been proven in Theorem 1, we only discuss the
correctness of the second condition here.

Firstly, for δ = 2, we verify whether the second condition holds:

E[|ζi −E(ζi)|]2+2 = ci(1− ci)
4 + (1 − ci)c

4
i

= ci(1 − ci)(c
3
i + (1 − ci)

3) (i = 1, ..., n)

In addition, we can also obtain
V ar(|C|)2+2 = V ar4(|C|) = (V ar(|C|)2)2 = (

n∑
i=1

ci(1− ci))
2

According to the two formulas above, we have the following inequality.

0 ≤ 1

V ar4(|C|)
n∑

i=1

E[|ζi −E(ζi)|]4

=

∑n
i=1 ci(1− ci)(c

3
i + (1− ci)

3)∑n
i=1 ci(1− ci))2

≤
∑n

i=1(1 + 1)∑n
i=1 ε

2

=
2n

n2ε2
=

2

nε2

So,
lim

n→∞
2

nε2
= 0

Based on the Squeeze Theorem, we can obtain

lim
n→∞

1

V ar4(|lC|)
n∑

i=1

E[|ζi −E(ζi)|]4 = 0

Thus, the second condition holds. Namely, for random variables {ζ1...ζn...},
the normal sum of {ζ1...ζn} is

Zn =
1√

V ar(|C|) (
n∑

i=1

ζi −
n∑

i=1

ci)

So, for any x ∈ (−∞,+∞), the cumulative distribution function, Fn(x),
of Zn has

lim
n→∞Fn(x) = lim

n→∞Pr{Zn ≤ x} =

∫ x

−∞
1√
2π

e
t2

2 dt

Thus, we can know that the probability distribution of
∣∣C∣∣ converges in

probability to Standard Normal distribution. �
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